How do whiskers and hillocks grow in Pb-free Sn coatings?

Fundamental mechanisms controlling stress evolution and whisker growth

Eric Chason, Nitin Jadhav, Eric Buchvecky, Allan Bower, Sharvan Kumar Brown University, Div. of Engineering SMTA 2010 Orlando, Fl

 Sn (Pb-Sn alloys) coatings on Cu used commonly by electronics industry

- Solderability/oxidation resistance
- Push towards Pb-free manufacturing
 - RoHS
- Problem: Pure Sn forms whiskers on Cu
 - Failures in satellites, pacemakers, missiles
 - http://nepp.nasa.gov/whisker
- Driving force believed to be stress from IMC
 - But details not understood

Real-time SEM measurements (4 days)

Examples of whisker failures

NASA website: http://nepp.nasa.gov/whisker

MATTE tin-plated copper lead frame after 3 years of ambient storage

Card guide in space shuttle flight box

Terminal of a Sn plated relay

Relay destroyed by suspected tin whisker-induced metal vapor arc

Difficulty: Multiple materials processes control whisker formation

- Complex multilayer structure with multiple phases
 - Sn, Cu, IMC, oxide
- Many kinetic processes to consider:
 - microstructural evolution
 - (inter)diffusion of Sn, Cu
 - intermetallic growth
 - stress generation in Sn
 - whisker nucleation and growth
- Lots of prior and ongoing work
 - many systems/processing methods

Approach: Use systematic measurements to identify mechanisms/develop models

<u>Understand</u>: How does stress relate to IMC growth?

How does stress lead to whisker formation?

How do whiskers grow?

Quantify kinetics of stress/IMC/whiskers in real-time

1) Stress evolution 160 after 120 sh [uN/m] sample Sn 80 Cu before 40 Si change due to Sn Remove Sn -40 10 0 Time (days) Cu Si Remove Sn layer – change in Wafer curvature measures total curvature gives stress in Sn force exerted by film. 2) <u>IMC volume</u> 3) Whisker density t=0 hrs 300 Selectively etch Sn **Oblique** optical Vol./Area illumination micro-**Find IMC volume** 200 highlights scope from mass change 150 whiskers t=500 hrs Also IMC 100 morphology S MS

light

Correlate stress/whiskering with IMC growth

100

-15

300

250 200

150

100

60

Time (hrs)

80 100 120

Stress (MPa)

of Whiskers/mm²

Pure Sn overlayers

- IMC grows continuously (rate slows with time)
- Stress saturates soon after formation of IMC (\sim 12 MPa)
 - → Onset of plastic deformation
- Whiskers start to grow after stress saturates (seen in SEM too)
- Have also studied effects of grain size, layer thickness, Pb alloying, annealing (next talk)

What are the mechanisms controlling stress?

"Standard picture": IMC grows into grain boundary Creates stress in Sn layer (Lee and Lee,1998)

- → Must be more than elastic effects
 - Stress exceeds yield stress
 - Need to consider plastic deformation

Stress relaxation by dislocation formation (X-TEM)

Stress relaxation by grain boundary diffusion: "ledge sample"

Schematic of ledge sample Cu Sn Cu-top Sn-top ←Si → FIB images of ledge sample

SEM around ledge

(Reinbold, JMR 2009)

- -"Ledge": Deposit Cu over **half** of Sn layer
- Monitor whisker density with SEM
- Measure Cu evolution with EDS
- -Whiskers form farther out than IMC

- No IMC 700 microns from ledge
- But whiskers are seen

Surface oxide prevents stress relaxation at surface

TEM shows dislocation pile-up at oxide

Stress relaxes when oxide removed (Chason, APL 2008)

Remove oxide by:

- Sputtering surface in vacuum
- Etching surface in solution

Curvature shows irreversible change due to stress relaxation in Sn

Put these mechanisms into model using finite element analysis (FEA)

(informed by experiments)

Features of model:

- Polycrystalline Sn film
- Columnar microstructure in Sn
- Cu substrate (homogeneous)
- IMC expansion at Sn/Cu interface (matched to measured V_{IMC} vs. time)

Mechanical behavior:

- Elastic deformation (isotropic)
- Plastic deformation (isotropic)
- Stress-driven, grain-boundary diffusion
- No surface diffusion (effect of surface oxide)

IMC

Grain-boundary diffusion elements

Calculate stress in Sn as IMC grows

Coupled grain boundary diffusion and plastic deformation transmit stress through Sn film

With GB diffusion:

- IMC expands at Cu/Sn interface
- g.b. diffusion/plasticity makes compressive stress spread upward through the film.
- Stress through film is relatively uniform.
- Full thickness of film can reach yield stress.

(Buchovecky, JEM, 2009)

Without GB diffusion, little stress is transmitted through Sn

Without GB diffusion:

- Compressive stress localized near IMC.
- Very low stress in much of the Sn, especially near surface.

(Buchovecky, JEM, 2009)

Evolution of average stress with different relaxation mechanisms

Average stress in Sn from FEA

- Use IMC growth kinetics from experiments
- Calculate average stress over Sn thickness (as in curvature data)
 - with g.b. diffusion
 - without g.b. diffusion
- Elastic/plastic with g.b. diffusion similar to measurements
 - Rapid rise then saturation
 - Stress spread across Sn layer

FEA & measurements:

- Stress spreads across Sn as IMC grows
- Due to plasticity and g.b. diffusion
- Saturates even w/o whiskers

How do whiskers actually grow?

Sn (2 micron)
Cu (1 micron)
Silicon

Movie #1

(see videos at:

www.engin.brown.edu/Faculty/Chason/research/whisker.html)

- Incubation period of 12-13 hrs
- Whisker appears from single small grain
- Uniform growth rate in vacuum
- No prior surface defect before whisker nucleation

Nucleation not due to grains with weaker oxide layer

- Sputtered off oxide using FIB
 - 3 *3 array of holes of size .5,2 and 5 micron

No whisker/hillocks nucleation from grains without oxide

Weak oxide is not sufficient to form whisker

Nucleation not due to grains with weaker oxide layer

- Sputtered off oxide using FIB
 - 3 *3 array of holes of size .5,2 and 5 micron

No whisker/hillocks nucleation from grains without oxide

Weak oxide is not sufficient to form whisker

Mechanism for whisker nucleation/growth

Enhanced stress relaxation at specific grains ("weak" grains)

Non-columnar grains
e.g., horizontal grain boundaries (Smetana)
Dynamic recrystallization

Plastically weak grain
Low yield stress

- → Maintains low stress at boundary of weak grain
- → Creates stress gradient
 - induces diffusion through g.b. network

Add "weak" grain to FEA model to allow whisker growth

• Different mechanisms to maintain low stress at whisker:

• Model IMC growth as uniform volume strain throughout Sn (IMC growth generates *excess* volume in Sn).

Use FEA to calculate:

- Stress field that develops around whisker grain.
- Rate of material transport to the whisker root (upper limit on whisker growth rate).
- Variables are IMC growth rate & whisker spacing.

Stress evolution with whisker growth

Large portion of film is at yield stress (not relaxed by the whisker)

(Buchovecky and Bower, APL, 2008)

Whisker vs. IMC growth rate from FEA models

Other observations of surface evolution

Not only whiskers grow

Movie #5

Schematic Explanation

Tilt

What determine the hillocks shape?

Movie #2

Schematic Explanation

Hillocks nucleation and growth from partial grain

Grain growth then hillock pops out

Movie #4

Grain Growth w/o hillock

Schematic Explanation

Complex morphologies

Combination of

- Vertical Growth
- Lateral (Grain) Growth
- Tilt

Future

Model with FEA

- Non-uniform stress
- Non-uniform mass flow
- Grain growth

Summary - Mechanisms of whisker growth

- 1) Cu diffuses into Sn to form IMC
- 2) IMC grows \rightarrow stress spreads through Sn
 - dislocation motion/point defects
- 3) Oxide prevents defect annihilation at surface
 - stress builds up in layer
- 4) Stress causes yield of "weak" grain
 - allows whisker to grow
- 5) Stress gradient drives diffusion to whisker base

Suggestions for mitigation

- Enhance stress relaxation in Sn
 - don't strengthen Sn!
- Modify microstructure of Sn or IMC to reduce stress
 - promote horizontal GB's as sinks (like Pb)
- Weaken oxide
 - •enhance stress relaxation at top surface
- Diffusion barriers
 - these don't stop driving force for whisker formation

Thanks to my collaborators:

Brown: EMC:

Sharvan Kumar Gordon Barr

Allan Bower

Nitin Jadhav

Eric Buchovecky

Jae Wook Shin (NIST)

Lucine Reinbold (Raytheon)

NSF-MREC AND NSF-DMR for support

